
COP 3223: C Programming (Intro To C – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Introduction To C - Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Intro To C – Part 2) Page 2 © Dr. Mark J. Llewellyn

More Basic C Programming

• Continuing where we left off in the last section of

notes, we’ll continued to introduce some of the basic

features of C in this section of notes.

• As we move on, note that the basics of C programming

never change. We’ll always use the same basic style

of coding, and many of the statements we include in

subsequent programs are the same we used in our very

first program.

• However, pay attention because we will always be

introducing new features of the language.

COP 3223: C Programming (Intro To C – Part 2) Page 3 © Dr. Mark J. Llewellyn

A Second C Program
Again the line numbers are for illustrative

purposes – I simply turned on this option in

the IDE. Do not type them in your code.

COP 3223: C Programming (Intro To C – Part 2) Page 4 © Dr. Mark J. Llewellyn

// sum of two integers (a second C program)

// This program adds two, user supplied, integers and prints their sum

// January 13, 2009 Written by: Mark Llewellyn

#include <stdio.h>

//main function

int main()

{

int integer1; //first integer to be entered by user

int integer2; //second integer to be entered by user

int sum; //variable in which the sum will be stored

//write prompts to user and get numbers

printf("Enter first integer number\n");

scanf("%d", &integer1);

printf("Enter second integer number\n");

scanf("%d", &integer2);

sum = integer1 + integer2; //assign the total to sum

printf("The sum is %d\n", sum);

printf("\n\n");

system("PAUSE");

return 0;

} //end main function

Text version of the

program – maybe easier

to read for input.

COP 3223: C Programming (Intro To C – Part 2) Page 5 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• The biggest difference between our first C program and this second C

program is that this one requires the user to input two integer values
for the program to add together. Our first program simply printed a
line of text without requiring any input from the user.

• There are a number of different ways that input can be generated by
the user to be entered into a program in C. We’ll start with a very
simple technique which uses a standard library function named
scanf (which like printf is defined in the stdio.h file).

COMMON PROGRAMMING ERROR: It is important to note that standard library
functions like printf and scanf are not part of the C programming language, rather
they are part of a library of functions are available to C programs. This means, for
example, that the compiler will not be able to detect spelling errors in printf or
scanf. When the compiler compiles a printf statement, it merely provides space in
the object program for a “call” to the library function, but the compiler does not
know where the library functions are – that is the linker’s job. When the linker runs,
it locates the library functions and inserts the proper calls to these functions in the
object code. Only now is the object program complete and ready for execution. If
the function name is misspelled, the linker will spot the error, because it will be
unable to match the name in the source program to a name of any known function
in the libraries.

COP 3223: C Programming (Intro To C – Part 2) Page 6 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• We’ll look more closely at formatted IO (input and output) later, but for

now we’ll just give a brief description of how this works.

• The scanf function is basically a pattern matching function that
attempts to match up groups of input characters with conversion
specifications (specified in the format control string). The generic
format of a scanf call is:

scanf (“format-control-string”, input-variable-locations);

Example: scanf(“%d”, &integer1);

• The scanf function obtains its input from the standard input
(which is typically the keyboard).

Format control string

contains conversion

specifiers

address of the

variable being

input

COP 3223: C Programming (Intro To C – Part 2) Page 7 © Dr. Mark J. Llewellyn

Some Commonly Used Conversion Specifiers

Conversion Specifier Description

d Read an optionally signed decimal integer. The corresponding

argument is a pointer to an integer variable.

u Read an unsigned decimal integer. The corresponding

argument is pointer to an unsigned integer variable.

h or l Place before any of the integer conversion specifiers to indicate
that a short (h) or long (l) integer is to be input.

f Read a floating-point value (e.g. 4.57). The corresponding

argument is a pointer to a floating point variable.

c Read a character. The corresponding argument is a pointer to a
char variable.

s Read a string. The corresponding argument is a pointer to an
array of type char that is large enough to hold the string and a

terminating null (‘\0’) character – which is automatically

added.

COP 3223: C Programming (Intro To C – Part 2) Page 8 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• Looking at line 16 of the program again:

scanf(“%d”, &integer1);

• Now you know that the “%d” string is the format control

string, which is this case contains a single conversion

specifier, indicating that the value to be input from the

keyboard is a decimal integer.

– The % sign in the format control string is treated by scanf

(and printf as we will see later) as a special character that

begins a conversion specifier. Each conversion specifier is

preceded by a % sign.

COP 3223: C Programming (Intro To C – Part 2) Page 9 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• The second argument to the scanf call on line 16

begins with an &, which is called the address operator in

C, and is followed by the variable name (integer1).

• The address operator, when combined with the variable

name, tells the scanf function the location in memory

at which the variable integer1 is located.

• The computer then stores the value for integer1 at

that location .

COMMON PROGRAMMING ERROR:

While there are a few exceptions to this rule that we’ll see later, in general, every
variable in a scanf function call must be preceded by the & (address operator).

COP 3223: C Programming (Intro To C – Part 2) Page 10 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• Lines 15 and 17 of the program are simply prompts to the

user indicating what they should do to interact with the

executing program. Prompts are typically just printf

statements with a message indicating what the user is to do

to interact with the program.

• Line 20, sum = integer1 + integer2;, is called

an assignment statement.

• Assignment statements are used to assign values to

variables as the result of calculations made by the program.

• The assignment operator in C is the = sign.

COP 3223: C Programming (Intro To C – Part 2) Page 11 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• Lines 10, 11, and 12 of the program, are variable definitions,
statements that define the variables that will be used by the
program.

• Variables are simply logical names that the programmer assigns to
hold values that the program will need to operate correctly.

• Variables correspond to locations in memory where the value of
the variable is located.

• In C, every variable must have a name and a type.

• A variable name in C is any valid identifier. An identifier is a
series of characters consisting of letters, digits and underscores
that does not begin with a digit. Identifiers can be of any length,
but only the first 31 characters are required to be recognized by
the compiler.

• C is case sensitive. This means the myNum and mynum are
different variable names.

COP 3223: C Programming (Intro To C – Part 2) Page 12 © Dr. Mark J. Llewellyn

Keywords In C

auto enum restrict unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool

continue if static _Complex

default inline struct _Imaginary

do int switch

double long typedef

else register union

Cells highlighted in blue are keywords in the C99 standard only.

COP 3223: C Programming (Intro To C – Part 2) Page 13 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

GOOD PROGRAMMING PRACTICE:

Multiple word variable names are typically constructed with the first word being
lowercase and each additional word starting with an uppercase letter. For
example, myNumberArray, or myName, rather than mynumberarray or myname.

GOOD PROGRAMMING PRACTICE:

While C allows variables to be defined using a “just in time” approach, meaning
that as long as the variable is defined before it is references (used), then the
definition is allowed. However, having variables declared throughout the
program code makes reading/understanding the code more difficult. Therefore,
a good convention to use is that in each function, all variables are declared
before the first executable statement in the function. Further, separate the
definitions from the executable statements by a single blank line.

GOOD PROGRAMMING PRACTICE:

Place spaces on both sides of binary operators in expressions to enhance
readability. For example, use sum = integer1 + integer2; rather than
sum=integer1+integer2;

COP 3223: C Programming (Intro To C – Part 2) Page 14 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• Lines 10, 11, and 12 of the program, are variable definitions,
statements that define the variables that will be used by the
program.

• Variables are simply logical names that the programmer assigns to
hold values that the program will need to operate correctly.

• Variables correspond to locations in memory where the value of
the variable is located.

• In C, every variable must have a name and a type.

• A variable name in C is any valid identifier. An identifier is a
series of characters consisting of letters, digits and underscores
that does not begin with a digit. Identifiers can be of any length,
but only the first 31 characters are required to be recognized by
the compiler.

• C is case sensitive. This means the myNum and mynum are
different variable names.

COP 3223: C Programming (Intro To C – Part 2) Page 15 © Dr. Mark J. Llewellyn

A First Look At Simple Decisions

• Executable statements in C perform either actions (such as
calculations or input/output of data) or decisions (we’ll soon see
several different types of decision statements).

• We’ll start off looking at a very simple form of C’s if statement.
A simple if statement is C has the following form:

if (condition)

{ body of if statement

}

• When a C program encounters an if statement, the validity of the
condition is evaluated. If the condition (which is an expression
that evaluates to either true (nonzero) or false(zero)) is true, the
body of the if statement is executed. If the condition is false, the
body of the if statement is not executed. In both cases the next
statement to be executed is the next statement immediately
following the if statement.

COP 3223: C Programming (Intro To C – Part 2) Page 16 © Dr. Mark J. Llewellyn

A First Look At Simple Decisions

• Let’s construct a simple program that reads in three integer values
from the keyboard and decides (using if statements) what the
smallest and largest numbers are from the three values input.

• I’m going to construct this program in a not terribly efficient
manner so that I can illustrate points about if statements, however,
in the last practice problem in this set of notes you will be able to
rewrite the program in a more efficient manner (if you think about
the problem just a bit).

• Note, the program shown on the next page is not complete, in that
I’ve cut away some of the details so that it will fit on one page, the
full code is on our course webpage for you to use as you wish.

COP 3223: C Programming (Intro To C – Part 2) Page 17 © Dr. Mark J. Llewellyn

//define three integer variables to hold user input values

int integer1, integer2, integer3;

//write prompts to user and get numbers

printf("Enter first integer number\n"); scanf("%d", &integer1);

printf("Enter second integer number\n"); scanf("%d", &integer2);

printf("Enter third integer number\n"); scanf("%d", &integer3);

if (integer1 <= integer2 && integer1 <= integer3) {

printf("The smallest value is: %d\n", integer1);

}

if (integer2 <= integer1 && integer2 <= integer3) {

printf("The smallest value is: %d\n", integer2);

}

if (integer3 <= integer1 && integer3 <= integer2) {

printf("The smallest value is: %d\n", integer3);

}

if (integer1 >= integer2 && integer1 >= integer3) {

printf("The largest value is: %d\n", integer1);

}

if (integer2 >= integer1 && integer2 >= integer3) {

printf("The largest value is: %d\n", integer2);

}

if (integer3 >= integer1 && integer3 >= integer2) {

printf("The largest value is: %d\n", integer3);

}

This is the logical “AND”

operator in C. The logical
“OR” operator is || and

the negation operator is !

COP 3223: C Programming (Intro To C – Part 2) Page 18 © Dr. Mark J. Llewellyn

Truth Tables For AND, OR and NOT

A B A && B

T T T

T F F

F T F

F F F

A B A || B

T T T

T F T

F T T

F F F

A !A

T F

F T

AND OR NOT

COP 3223: C Programming (Intro To C – Part 2) Page 19 © Dr. Mark J. Llewellyn

Practice Problems
1. Modify the program on page 3 so that it accepts 4 integer

values and produces the sum of the four numbers as
output.

COP 3223: C Programming (Intro To C – Part 2) Page 20 © Dr. Mark J. Llewellyn

Practice Problems
2. Modify the program shown on page 3 so that it accepts

three integer numbers and produces as output both the
sum and product of the three numbers.

COP 3223: C Programming (Intro To C – Part 2) Page 21 © Dr. Mark J. Llewellyn

Practice Problems
3. Modify the program shown on page 17, so that it does not

require six if statements to determine the smallest and
largest values from the input set. Modify it so that it still
uses only if statements (i.e., don’t use else statements or
switch statements for those of you who may already
know some more C than where we are currently at in the
course.) Since I don’t want you to use an else statement
yet, you should be able to reduce the number of if
statements from six to four. If somebody gets it in less
than four if statements, let me know how you did it!

